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Abstract
Sufficient conditions are given for optimum causal feedback to increase
information capacity for the discrete-time additive Gaussian channel. The
conditions are obtained by assuming linear feedback and reformulating the

problem into an equivalent no-feedback problem.
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Introduction

Information capacity of the discrete-time additive Gaussian channel with
feedback is an open problem. It has long been speculated that causal feedback
can increase capacity. We give here sufficient conditions for optimum causal
linear feedback to increase information capacity for any fixed value of the
constraint, for all values of the constraint, and for all sufficiently large
values of the constraint.

A special case of these results is for the finite-dimensional channel
with a pure power constraint. The method developed here gives the solution for
that case in a particularly easy fashion: see [1].

Recent work on the capacity of feedback channels has been done by lhara

[2] (for the finite-dimensional channel) and by Cover and Pombra [3].

Problem Statement

The capacity problem will be considered for both the infinite-dimensional
and the finite-dimensional discrete-time additive Gaussian channel. However,
the setup will be given only for 82; it will be seen (by substituting RK for
82) that the procedure also applies without change to RK. although of course
the finite-dimensional channel is much simpler and does not require the full
development given here.

All stochastic processes are defined on a probability space (Q.B,u): E(-)
will denote expectation with respect to p. lixll will denote the 82 norm of the
vector x: lell2 = 2 [x(n)]2.

n21

The channel output is Y = X - BY + N, where N is additive zero-mean

Gaussian noise with strictly-positive trace-class covariance matrix RN' X is a

12/3/87 - 1 .
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message process independent of N, and B is a Hilbert-Schmidt strictly-lower-

triangular (HSSLT) matrix: 3 b?j < ® and bij =0 for j 2 i, all i 2 1. The
i,j21

mutual information of interest is that between X and Y. denoted I(X, Y). The

constraint will be given in terms of a trace-class covariance matrix RW' Any

constraint must imply a constraint of this form if the capacity is to be

finite [4]. The class of admissible message processes X and HSSLT matrices B

KN
consist of all X such that almost all sample paths of X belong to range(R&).

ES —
range(B) is contained in range(Ra). and EHX—BY"% < P, where HuH% = Hszunz.

The capacity is then the supremum of the mutual information I(X.,Y) over all
such admissible pairs (X,B).

The feedback capacity will be denoted by CWF(P)' The capacity of this
channel without feedback is for the case B = 0, so that the constraint is

EHXH% € P. This capacity will be denoted by CW(P)'

IR AR

o

The assumptions that RN and Rw are strictly-positive can be dropped.

Attention can be restricted to range(RN); in order to have finite capacity,

Pt R

I

one must then have that Rw is strictly positive as an operator in range(RN);

LA
-

see [4] for details. However, without loss of generality, it is assumed here

PR

that both RW and RN are strictly positive.

h ]

5 Ve
L3

Preliminaries

D RO
L

This section contains several mathematical definitions and small results

5Ty

will be needed to prove the main result. It will be seen that much of

is obvious when one treats RK.

PSR
PP -{ -i'_ -{-

82882 will denote the set of all Hilbert-Schmidt operators mapping 82

22. A is in 82092 if and only if A has a matrix representation such that

P Lk

o
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B
[3
L7
[) ]
Y A
o~) 3 [A(i§)] < ®. For A, and A, in £.82.. define .
i 1 2 2772 N
"y i, le :t
o _ »
<A1'A2>® = Trace A1A2
'.
N =33 A (1§)AN(51). ;
A A | 2 .
\ 1] o
D)
. <~.-)0 defines an inner product on 82882. and it is known that 82®82 is a
i Hilbert space under this inner product [5]. Moreover, convergence of a .
> sequence (An) in 82®82 to an element A in 22@82 implies that HAn—AH = 0 and ?
i thus A x - Ax for all x in &,. A
~ n 2 {
(6n) will denote the natural basis vectors in 822 Gn(i) =0 for i # n, .
[} ‘:
fq én(n) = 1. Let Hn = span{&i. i ¢ n} and denote by Pn the projection operator E
iy
'f with range space Hn' Pn is a diagonal matrix with Pn(i.i) =1 for i { n; t
Pn(i.i) =0 for i > n. d
N \
) :
o} . n : . b
™~ Lemma 1: Let Rw be the matrix P RWP :
‘ nWn
‘I
. Ry(ij) = Ry(ij) for i <n, j ¢ n
¥ = O otherwise. Then: =
N n % . . :
;} (1) Rw = VnVn for a lower triangular matrix Vn with Vn(il) = ¢, for i ¢ n, o
\: n \_'
- where I ¢y = determinant R;;
. i=1 Y
-‘. N
L (2) Vx =0 for all x in Hl: N
&, n n =
- <)
v (3) Ifmd>n, V_=PV; 3
:-, n nm \
(4) (V) is a Cauchy sequence in 2_02,; 1
) - n 272 o)
o (5) Rw = VV*. where V is a unique lower-triangular Hilbert-Schmidt matrix T'
.. 1
o
:: such that V(i.i) = 4 for all i 2 1, and V = lim Vn in the topology of !
: €2®£ . Moreover, V. =P V for n > 1. -
0 2 n n -,
g
> -
LN Proof: Since Hn can be identified with Rn. and R; with a covariance matrix in ::
,; R", (1) is obvious, as is (2). To see (3)., if i,j < nand m > n, then '
N )
J L)
K
y &
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Ry(id) = Ry(11) = 3V (1k)V, (§K)
k<én

= s P V_](ik)[P_V_](jk).
kgmin(i.j)[ o Ymd (KR V. 1(5Kk)

Since Pan is lower triangular, Pan(xl) = Vm(il) = Vn(ll) for all i { n, and
the factorization R; = VnV: is unique when the diagonal elements of Vn are

fixed [7], it follows that V_ =P V .
n nm

For (4). note that RQ =P RP . If m>n, then

m m
Trace (V_-V )(V.-V )* = s n(v -v)*s 1% = 3 Wi -ns 0% = 3 s 1% =
il J j=1 J j=n+1
m m
._2 (PmePméj.6j> = .-2 <Rw5j,5j>. Since Rw has finite trace, this sum
j=n+1 j=n+l1

converges to zero as m,n = ®, showing that (Vn) is Cauchy in 82822.

To obtain (5), we first recall that convergence in 82®£2 implies norm
convergence to the same limit [5], so there exists by (4) a Hilbert-Schmidt
operator V such that Vn'* V in both 82082 and operator norm. VnV: must then
converge to VV* in the operator norm topology. However, VnV: = RQ = PnRWPn' SO
VnV: converges to Rw in operator norm. Since the set of bounded linear
operators on 82 is a Banach space under the operator norm [6], a Cauchy
sequence has a unique limit, and this gives Rw = VV*. V is necessarily
Hilbert-Schmidt, since RW is trace-class. To see that V must be lower-
triangular, note that Tr (vn-V)(vn-V)* >0, and Tr (vn-V)(vn-V)* =
.z_(vn(ij)-V(ij))2. Since V_(i§) = O for j > 1 and all n 3 1, it follows that
i.]

V(ij) = 0 for j > i 2 1. The same relations show that V(ii) = c, for all

i 2 1. Since P VV*P =V V*. we proceed as before to obtain V_ = P_V.
n n nn n n

o]

If u and v are two vectors in 82. then u®v is defined to be the element

of 82882 defined by (u®v)x = <v,x)u.
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In order that the capacity without feedback be finite, it is necessary

and sufficient that RN = R%(I+S)R$ where S is a self-adjoint operator in 82
such that (I+S)-'l exists and is bounded [4]. The limit points of the spectrum
of S consist of all real numbers A such that A is either an eigenvalue of S of
infinite multiplicity, or the limit of a sequence of distinct eigenvalues, or
a point of the continuous spectrum (i.e., (S-)\I)—1 exists and is densely-
defined but not bounded). The set of limit points of S is not empty. For
discussion of these and related facts, see [6]. 6 will be used to denote the
smallest limit point of the spectrum of S. As in [4], (An) will always be used
to denote the sequence of eigenvalues of S that are strictly less than 6; they
are ordered by kl < A2 { .. < 8, and repeated in the sequence according to
their multiplicity. Of course, there may not be any eigenvalues strictly less
than 6. If {kn, n 2 1} is not empty, then (en. n2l} will denote orthonormal

eigenvectors of S corresponding to the eigenvalues (An)i Sen =ANe .n2l1l.

nn’

4
With Ry = w*, R; =V for L a unitary operator [7]. Since I + S =

-% -1 % » * -1 »—1 .
Rw RNRw {(on the range of RW)' L(I+S)L =1 + L SL =V RNV . As L is

unitary, L*SL has the same spectrum as S, and so V_IRNV“_1 has the same

spectrum as I + S. Thus, 1 + 6 is the smallest limit point of the spectrum of

V_lRNV*_1 and {1+Ak. k > 1} are the eigenvalues of V_IRNV”_1 that are strictly

less than 1 + 0.

Main Result

Theorem: Let V be a lower-triangular matrix such that Ry = w*. Fix P > 0.

(1) For the K-dimensional channel, let ﬁl [4 62 ¢ ... ¢ BK be the eigenvalues
J
of S, with J the largest integer ¢ K such that JBJ <P+ 3 Bi.
i=1

12/3/87 - 5
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CWF(P) > CW(P) if the set of eigenvectors of V—IRNV*--1 corresponding to
the sequence of eigenvalues (1 + ﬁi' i ¢ J) does not contain J natural
basis vectors.

(2) For the infinite-dimensional channel, CWF(P) > CW(P) if the following
conditions are satisfied:

(2) (Ak. k 2 1} is not empty;

J
(b) If there exists a largest integer J such that JAJ P+ 3 Ai‘ then

i=1
CWF(P) > CW(P) if the set of eigenvectors of V-IRNV)‘—1 corresponding

to the sequence of eigenvalues (1 + Ak' k ¢ J) does not contain J

natural basis vectors.

J

or (b') If JXJ { P+ 3 Ai for all AJ. then CWF(P) > Cw(P) if the subspace
i=1

- -
spanned by the eigenvectors of V 1RNV 1 corresponding to the
sequence of eigenvalues (1 + Ak' k > 1) does not contain a set of
natural basis vectors that is complete for that subspace and which

are eigenvectors of V_IRNV*—I.

Corollary:

(1) For the finite-dimensional discrete-time channel, causal linear feedback
can increase information capacity for all P > O if the subspace spanned
by the eigenvectors of V—IRNV*_1 corresponding to its smallest eigenvalue
does not contain a basis consisting entirely of natural basis vectors
which are eigenvectors of V_lRNV*_l. Causal linear feedback can increase
capacity for all sufficiently large P if and only if V_IRNV*-1 is not

diagonal .

(2) For the infinite-dimensional discrete-time channel, causal linear

feedback can increase capacity for all P > O if (Ak. k > 1} is not empty

-
0

-,
.

5

.‘-

A

h)
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and the subspace spanned by the eigenvectors of V--IRNV““1 corresponding

to its smallest eigenvalue does not contain a basis consisting entirely

»—1

of natural basis vectors which are eigenvectors of V—IRNV
CWF(P) > CW(P) for all sufficiently large P if {Ak. k 2 1} is not empty
and the subspace spanned by the eigenvectors corresponding to the
eigenvalues {1 + Xk. k 2 1} of V_IRNV”_1 does not contain a basis for the
subspace consisting entirely of natural basis vectors which are

eigenvectors of V-IRNV*_I.

Remark: The sufficient condition in (2) giving CWF(P) > CW(P) for all
sufficiently large P is equivalent to the following statement: {xk, k 2 1} is
not empty, and the restriction of V_IRNV”“1 to the subspace spanned by the

eigenvectors of V.IRNV*_1 corresponding to the eigenvalues {1 + A, , k > 1} is

K’
not a diagonal matrix.

The results stated in (1) of the Corollary were proved in [1], where the
development is much streamlined because of the simpler nature of the finite-
dimensional problem. That work used Rw = I. For the same finite-dimensional
channel and constraint, Ihara has obtained the result that capacity is
increased for all sufficiently large P if RN is not diagonal [2]. although his
result is stated in a different form; his methods are quite different from
those used here. He also gives as a sufficient condition for CWF(P) > Cw(P)
for all P > O the condition that (in the terminology used here) RN has no

natural basis vectors as eigenvectors. The corresponding sufficient condition

given in (1) of the Corollary is much weaker.
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Reformulation of the Problem K
In this section, the original linear feedback problem is converted into >
an equivalent no-feedback problem. Originally, Y = X - BY + N, where the

matrix B is HSSLT. (I+B)m1 exists, since B can have no non-zero eigenvalues;

(I+B)_1 is bounded, since B is compact (and thus has only zero as a limit

1
]

point of the spectrum). Thus, Y = (I+B)‘1X + (I+B)-1N. Since (I+B)_1 is 1:1, :S
o
I(X., X+N) = I(X. (I+B) }(X+N)) = I(X. Y). ..

Of course, the constraint EHX—BYH% ¢ P is the same as EHX—B(I+B)—1(X+N)H% < P.

e e

Using Rw = w* with V Hilbert-Schmidt and lower triangular, the constraint can

I"J

be written

Ty

Py ENV !X - v IB(1+B) I (xenyi®

or,

e

P > ENZ - D(V 'zeNyn2,

.A,.
LA
LI

P
.Yy

where D = V-IB(I+E”)_1 and Z = V-IX. D is well-defined and bounded, since

o

range(B) C range(V) and (I+B)—1is bounded. Moreover, since B is HSSLT and both

vl and (I*—B)—1 are lower triangular, D must be strictly lower triangular and

bounded (BSLT).

The feedback capacity problem under our initial assumptions thus becomes
maximize I(X, X+N)

subject to P 3 EIV X - D(X+N)UI2 o
where D is permitted to be any bounded SLT matrix in 22.
This is actually the problem that will be considered below in obtaining

the sufficient conditions of the Theorem and the Corollary. j
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Analysis

Let H(e2.u) be the set of all real random vectors u on (,8) such that

u(w) € 82 a.e. dP(w) and E 3 [u(n.w)]2 < o, H(Bz.u) is a Hilbert space under

n2l

4

the inner product (f,g)

E 2 f(n.,w)g(n.w). Let Y1 and Y2 be two mutually
~ n2l

independent zero-mean Gaussian random vectors in 821 E Yl(m.w)Yz(n.m) = 0 for

all n,m > 1. Suppose that RY + RY is strictly positive. Define H (Y. +Y,) as
1 5 -+71 2

the set of all elements f in H(ez.u) such that f = B(Y1+Y2\ for some bounded

SLT matrix operator B. H_(Y1+Y2) is clearly a linear manifold in H(ez.u). To

. . . . . n, .
see that this linear manifold is closed, one notes that if (B') is a sequence

of bounded SLT operators,

n m 2 n ,m 2
B (Y1+Y2) - B (Y1+Y2)Il,.l (B -B )(Y1+Y2)Hu

Trace (Bn—Bm)(RY1+RY2)(Bn“Bm)*

I(B"-B") (R, +R, )21 > NB"-p™i2
(RYI RY2 K

(A4

0]

where v, is the smallest eigenvalue of RY + R, . Thus, (Bn(Y +Y,))} Cauchy in
0 1 Y 12

2

H(€2.u) implies that (Bn) is Cauchy in operator norm, so converges to a

bounded linear operator B. To see that B is SLT, one notes that

1
RY + RY = QQ* for some lower-triangular Q, and so (RY +RY )2 = QT for T
1 2 1 2

unitary [8]. This gives

2 m 22
HBn(Y1+Y2) - Bm(Y1+Y2)Hu (B"-B )(RY1+RY2) g

n ,m 2
(B -B )QHQ.

Thus, (BnQ) is Cauchy in &.®2_.. so that BQ must be strictly lower triangular;

2 2
12/3/87 - 9
G PO Ty

R LIS PN
AN SN -\'x\_-s\. J,.\

2

/

AL

LR TR B
Ul .
L3

g oA

~ @,
o

&
-_

o

s

oo

.

@ g
»

{. "‘:“ ."

.v_.'.
','..- »
LA 4
- o -

pEIS]®
z k\,'i"

¥

® L5

LR}
Pl k]

o oy,
! A A

IR A PO

.

€ st v

Y hYh

~

]

“y
Pl

Fa sl
3

Fet gt
Pl it
Py

<

l.l 4

e e g
- "l,..l
L

,

S
. .l

LN

'."I‘l
L}

[N
s

SEXANES

k=W

. .
'/'_ >)

B T T T T N T R T



NI RIIR AT G A0 M A 2h 2 G b

since Q-1 exists and is lower triangular, this shows that B is a bounded SLT

matrix operator, so that H_(Y1+Y2) is closed.
Now consider our feedback problem: We wish to maximize I(X, X+N) subject

to P > EIV X - pexeN) % = wvlx - D(X+N)H§. where D is permitted to be any

bounded SLT matrix. Given any choice of D that satisfies this constraint, we
know that IV X - D(X+N)H§ > wlx - P_(V-IX)ui. where P_(V 'X) is the
projection of V_IX onto H (X+N). Thus, we can assume WLOG that D is the
optimum bounded SLT matrix for minimizing the distance in H(82.u) norm between
v !X and H_(X+N): D(X+N) is the projection of V X onto H_(X+N).

Now, let X be the optimum no-feedback message for the case when capacity
is attained (assuming here that CW(P) can be attained). As the message for the

feedback problem, use aX. Then I{aX, oX+N) > CW(P) if a > 1. Choose a to

satisfy the constraint:

Ak

o
1}

aX - D(aX+N)H5

a>Tr v‘lev‘1 - A,

where A = A(a) is the H(ez.u) norm of the projection of aV_IX on H_(aX+N).

_ - 4 _a
Since Tr V 1RXV L Tr RWZRXRW2 = EHXH% = P, we have P = a2P - A, so that

a > 1 if aV-IX is not orthogonal to H_(aX+N).
Prop.: aV_IX is orthogonal to H_(aX+N) if and only if V—IRXV*_1 is diagonal.

Proof: Since X is independent of N. (aV ™ 'X. D(aX+N)),, = oTr DRV =
o®rr VLV 'RV '], 16 VIRV is diagonal. then (as DV is SLT)
Tr DRXV"‘1 = 0 for every bounded SLT matrix D.

If Tr DRXV’('—1 = O for every bounded SLT matrix D, take i,j with i > j.
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Let D(k&) = O unless k =i, & = j;

D(ij) = 1.
Then, Tr DV(V 'RV ') = (RV*1)(ji) = O. This shows that va*‘l must be
lower triangular, so that V-IRXV*-1 must also be lower triangular. Since

-1, 1 . . -1, ¢ 1
\) RXV is symmetric, V RXV must be diagonal. -

In the above development, we have implicitly assumed that a always exists

to solve the equation a2P = P + A(a). This is not obvious, as the subspace

H (aX+N) changes with a. Here we will show that a lower bound oy exists; i.e.,

a > 1 and a bounded SLT D such that nalv'lx - D(a1X+N)"§ = P.

Let D be the optimum SLT matrix to minimize HV_IX - D(X+N)Hi. Then

Tr DRXV"“l = Tr DRD" + Tr DR\D" = A(1). Take a # O. Then lav™1x - D(aX+N)H: =

a2(P - 2Tr DR,V ! + Tr DR,D™) + Tr DRD™. If P - 2Tr DRV 4 Tr DR,D™ # 0,
then one can set P = HaV-IX - D(aX+N)Hi and solve for a2. obtaining

3
a2 P-Tr DRND

= > , giving ¢ > 1.
P-Tr DRND -A(1)

To see that P - 2Tr DRV ' + Tr DR,D” # 0 when VT 'RV} is not
diagonal, we note that if inequality does not hold, then HV-IX - D(X+N)H§ =
P - A(1) = Tr DRND*. Similarly, for any a # O, HaV—lX - D(aX+N)H5 =
a2 (P-2Tr DRXV*'1+Tr DR,D") + Tr DRND* = Tr DRD". Thus, P - A(a) ¢ Tr DR\D* =
P - A(1). or A(a) 2 A(1), all @ # 0. This cannot hold if V-IRXV’('-1 is not
diagonal, since A{a) ¢ a2P, and A(1) # O when V-IRXV"_1 is not diagonal.

We have now shown that causal linear feedback can increase capacity
provided that V_IRXV”_1 is not diagonal, where Rx is the optimum message
covariance matrix in the no-feedback problem (whenever capacity can be
attained in the no-feedback case). These conditions need to be converted into
conditions on the noise covariance matrix R, and the constraint matrix Rw.

N
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This will be done in the next two sections, treating the RK and 82 channels. t

Finite-Dimensional Channel (RK)
From Theorem 1 of [4], the optimum no-feedback message has covariance

matrix given by

R

J i L
[ 3 B + P] 3 Rwu @Rwu - 3 ﬁmR%unQRaun.
m=1

where {un. n { K} are o.n. eigenvectors of S corresponding to the increasing

sequence of eigenvalues (ﬁn). and J is the largest integer < K such that

J 1
P+ 2 Bi 2 JBJ. Let L be the unitary operator in e2 such that R; = VL*. Then
i=1
‘ JrJ
-1 -1 1 2% *
\'s RXV =3 i [iflﬁi + P - Bn](L un)G(L un).
Now. VIRW! = L¥(1+8)L. and Su_ = Bu . so
* »* »* »
L (I+S)LL u = L (I+S)un = (1+Bn)L u

i.e., {L*un. n € K} are c.o.n. eigenvectors of V—IRNV"-1 corresponding to the
sequence of eigenvalues (1+Bn). n < K. V—IRXV*—1 is then diagonal if and only
if {L*un. n ¢ J} can be taken as natural basis vectors, proving (1) of the

Theorem. For all sufficiently small P > O,

=1 _ P s % e™ .
M n n

V_IRXV

H M=

1

where M is the multiplicity of the eigenvalue Bl of S, and of the eigenvalue

-1, 1 -1, 1 . * o
1+ Bl of V RNV . Thus, V RXV cannot be diagonal if (L u.n < M} bf
cannot be taken as natural basis vectors. For larger values of P, when Rx has :

~
-1 A

the representation given above for J > M, then the eigenvectors of V-lRXV

n

must include {L*un. n ¢ M}. Now, if V-IRXV"—1 is diagonal, then it must have a

1273/87 - 12
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o

c.o.n. set of eigenvectors consisting of natural basis vectors. However,

}'\‘%‘

span{L*un, n ¢ M} cannot be spanned by M natural basis vectors, so that
V-lRXV“-1 cannot have a c.o.n. set of eigenvectors consisting entirely of
natural basis vectors. This shows that CWF(P) > CW(P) for every P > O if the

M-dimensional eigenmanifold of Bl is not spamned by M natural basis vectors.

TSRS T

4
WY

By letting P become sufficiently large, J = K, and then the above

»ee?
-

expressions show that v'lev"'1 will be diagonal if and only if v‘lRNv"'1 is

b4

K
diagonal: V’IRXV"'1 =il zp +P+ K]I - VIR V1. This proves the
K j=1 1 N

sufficient conditions of the Corollary.

To see that capacity cannot be increased by causal feedback if V_IRNVN_1
is diagonal, one notes that the feedback capacity problem is that of
maximizing I(X, X+N) subject to the constraint EHV—ID(X.N)Hi < P, where

n

qui = 2 X and D is a possibly non-linear operator depending only on the
i=1

A
NN

past of the second coordinate (causal): [D(x.y)]n = D?(x.[yl.y2....yn_1]),

J
t

n-1

where D? maps RKXR into R. Write the constraint as EHV-IF(T.Z)Hﬁ ¢ P, where

s
ﬁ.
S
o
e
l‘
'
o

-1 1

T=V X, Z=V N, and F(x.,y) = D[Vx.Vy]. Since V is lower-triangular and D

.y
fl
e %

{'

/

is causal in the second coordinate, F is also causal in the second coordinate.

‘:“- )

42

1(x.Y) = (v 1, vlyy = 1pviix, vipgxony + vOIND = IpT. VOIR(TLZ) + Z]. The

‘o

constraint is EHV—IF(T.Z)Hi < P, and V-IF(x,y) is a causal function of y.
1

e

A Pt

However, Z has covariance matrix V—IRNv*— . Thus, if V_IRNV*-1 is diagonal,

il A}

the original problem is equivalent to the capacity problem with causal

TP A h b S N

feedback when the channel is without memory. It is well-known that capacity

e tat

cannot be increased in this case.

»

R

This completes the proof of the theorem and corollary for the finite-

v "a e
Py

dimensional channel.

- "- l,”
hd

LA
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Infinite-Dimensional Channel (82)

First, assume that {An. n21} is not empty. Several cases need to be
considered. The various expressions for the optimum RX (when it exists) and
the value of CW(P) are taken from [4].

(1) 3 (8-A) < =,
) 1 )

If P<C 2 (G—An). then there exists finite J such that the optimum no-
n2l

feedback covariance is given by [4, Theorem 3],

J 1
2-

1 > ke orte - RE[ 3
RX = j[izlki + P]nlewenORwen - Rw[;z Anenﬁen]RW

1

(>)

As in the finite-dimensional channel, this shows that VRXV*—1 will not be
diagonal if the subspace spanned by the eigenvectors of V_lRNV*_1
corresponding to the sequence of eigenvalues (1 + Ak' k <J) of V—IRNV*-1

does not contain a basis consisting entirely of natural basis vectors which

are eigenvectors of V—IRNV*-I.
o J
IfP= 2 (B-An). then JKJ <P+ 3 Ai for every AJ [4]. and an optimum
n=1 i=1

message covariance exists and is given by

Ry = I (8-A_ )RZe ORZe .

n21

This gives

-1 %=1 » »
VIRV = nfl(e—)\n)(L e )8(L7e ).

.
.
.
|
*
-~
=
-
-~
S
o
\\_
S
.
e
L.

which is clearly diagonal if and only if (L*en. n 2 1} can be taken as natural

basis vectors.

AH

iy

L 'g ‘(';"‘r,: I

If (An) is an infinite sequence and P > En(G-An), then capacity cannot be

r3

attained in the no-feedback case. However, the capacity is given by lim Ig(P).
K-
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.
p
4
)

m g

where Ix(P) is the value of I(XK.XK+N) when

K_1(% e ot - 2[5 5
RX = K[ S, + P] b Rwen®Rwen - Rw[nZ kneHQeH]Rw.
i=1 n=1 =1
Let AK(I) be the squared H(ez.u) norm of the projection of V-IXK onto

H_(XK+N). If limsup AK(I) > 0, then as before the capacity can be increased.
K

That is, we choose K sufficiently large so that I(aXK. aXK+N) > CW(P)' where

P-Tr DKRNDK

, with DK
)
P - Tr DyR\Dy - 4g(1)
the bounded SLT matrix that minimizes EIIV_IXK - K(XK+N)II2. The problem is now

a>l, a? aK(l). with aK(l) satisfying ai =

reduced to showing that AK(l) = O cannot hold if there exists some J such that

2
{L e.n < J} cannot be taken to be natural basis vectors. Suppose such ]

exists and take K > ]J.

Write X = ng + XOK' where ng is the zero-mean Gaussian process with

K.,J

covariance matrix Rx

K

3 3, opl
f 3 Ai + P - Kkn]RweHQRwen.

n=1‘ti=1

N L

J

and XOK is independent of XOK' As K 5 @, Ri'J converges in the operator norm

J

1 i
topology to 3 (G—A JR2e_®R2e , using the fact that I (6-A o) < P. Now suppose
ne n”Wn ¥Wn 1

that A (1) = 0. This requires that ECV” xJ v'lxox. B(xéK+xOK+N)> -0 for

every fixed bounded SLT matrix B. Since ng and XOK are independent, this

implies that EXV ng‘ Bng> - 0 for every bounded SLT B, or

K.J 3

Wyl . Z. apz ey
} = 0. Since Rx - 2 (G—An)RwenGRwen as K - », this implies
n=1

{Trace BRX

J
(as in the proof of the Proposition) that 3 (6-A )L e oL e, is diagonal. This
n=1

* :
cannot be, since by assumption {L e, n ¢ J} cannot be taken as natural basis
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vectors. This shows that optimum feedback will increase capacity when

P> 2 (B—An) and (kn) is an infinite sequence.

n2l
Finally, suppose that (An) is a finite sequence, Al < k2 < .. < AK' and
K
P> = (B—An). Then there exists an infinite o.n. set {un. n21} such that
n=1
H(S—GI)unu - 0 and u i span(el.....eK) for all n 2 1 [6].

Fix M < @ and take ¢ > O such that 6 - AK > €.

M . 3 . . .
Let X1 be the zero-mean Gaussian process with covariance matrix R? given

by
M K 2il(—lxi M P? Kkn %
- - 2 2
Ry = nfl[ K(1+») ]Rnue BR\Ue
where P? < P.
M.e M.,e
Choose o.n. vectors uy veealy from the set (un. n 2 1} such that

|<(S—GI)uT'6. u?'e>| e for i (M. Let Xg'e be the zero-mean Gaussian process

with covariance matrix RM'& given by

2
p-pP x
Me _ 1 3. Me, 2 Me
Ro™ = W(Teove) S e
Now, let XM'6 be the zero-mean Gaussian process with covariance matrix
M.e Me M M.e . M.e .
Rx , where RX = R1 + R2 . Since uy is orthogonal to span(el....eK) for
i (M,
I(XM'E. XM'&+N) - I(XM. XM+N) + I(XM'e. XM'6+N)
1 1 2 2
K Tt PRy PPl
- 4 = 1 —_—
=3 32 log[l + K(1+r) ] + 3 M log[l + W(1+6ve) ]
n=1 n
M, e

X satisfies the constraint for any PM < P, since

1
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s
3
:

R

Oy

Y
P

gt }

-3

- Rg'esz = Trace R;F(R1+R2 )sz

M _Me, -3

s
v %Y

..,,,
ﬁﬁ:.”‘.
£rrs

v

-

1t M(1+68+¢)

M(1 + 8 +¢) =P.

LAY

i., '-.

L gN 3§
0

Now, define PM by

P A

K
(M-K) = Ai + (M-K)K0|.
i=1

-
1]
3I

—
e
|

LA MRS '-"-.,'-

Then

54

“

2ptel

“"t'r‘ 4

I(X,, 2 3 log

n=1

5

K [MK + K2§=1Ai + KP + (M—K)KG]

'—‘><=
+
4
~
i
L 2
Pd

MK(1+An)

L)

L4 @
‘.

Pty

As M - o,

i‘.:?

"'.
\ 4

M
1

J,\r

~
—
oy
+
(o]
—_
o

(K], X]*N) > % 3 log|—n

iy

R
%
e

TRy

Similarly,

[ %
% % %
P

M2(1+0 M-K)[P + 35 A.- K8
I(Xg'". X EiN) =1 M log[ (Lrove) » WFOTF * 2102 ]

rs
’, ,f, &4
-

M2(146+€)

A

As M 5 o,

»

A 4

I(xg'e. Xg'e+N) -
1 2(1+8+¢)

P+ z§=1(xi—e) |

14

WA Ny

e as
" * ll l’

EAIR

~

Thus, I(X ', X '6+N) converges, as M - ®, to

A '..:.,5'_-.

R zle(xi-e) |

—
+
>
—_—
+
N
»

1 +0 +e

'-l“-' 5\ 'v. i

AP 7,

From Theorem 3 of [4], the capacity CW(P) is equal to

.
LN

K P+ 3K (n-8)
EAD) log[1 *+ 9 ] + 1 i=1" i

1 + A 2 1+6
n=1 n
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so that by choosing e sufficiently small and M sufficiently large, one can

obtain I(XM'E. XM'€+N) arbitrarily near Cw(P).

As e 2 0and M »», V¥ le €y converges to a diagonal matrix, since

|<(s-61)u""€. u}"®>] < e for i < M. However,

DI % eLe .
n n

S1M -1 1
v Rfv - 3 -

K X A+ P

[ i=1l i ]
n=1

This matrix will not be diagonal if (L*en. n < K} cannot be taken to consist
entirely of natural basis vectors. This is equivalent to not having K natural

. . -1, 1 .
basis vectors as eigenvectors of V RNV corresponding to the sequence of

eigenvalues (1 + Ak' k < K). Inserting the above definition of PT.

K K
V—IR?V* o s [(e—x ) + [P + S, - KG]M 1]L*e 8L"e . This matrix is
n . J n n
n=1 j=1
independent of €; as M - ®, it converges in the operator norm topology to
-1 1 K »* »*
\' R1V = 2 (B—An)L enQL e - Similar to the preceding part of the proof, we
n=1

now consider AM e(l)' the squared H(e2,p) norm of the projection of V—IXM'E
onto H_(XM'6+N). AM 6(1) -+ 0 as M 5 o implies, as in the preceding part of the

proof. that V_lRlv"_1 is diagonal. This is a contradiction. In fact, A (1)

M.e
_ p-Tr DM.eRNDM.e .
S P-Tr DM,eRNDM.e B AM.e(I) M
M.e

DM 6(X +N) the projection of V_IXM'6 onto H_(XM'6+N). Since

is bounded away from zero. Define aﬁ

rx™ €. X"y 5 g (P) as e 50, M > @, and 4

zero, we obtain I(aM 6XM'E. ay eXM'6+N) > CW(P)' This completes the proof of

M e(l) is bounded away from

sufficiency in part (2) of the Theorem when En(G-An) < o,
(2) 3 (8-A) =
In this case, P < Zn(O—An) for all P > O, capacity is attained in the no-

feedback case for every P > 0, and for each P > O there exists J < © {the

12/11/87 - 18
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value of J depending on P} such that the optimum message covariance matrix RX
is given as in (). As in case (1), it is clear that feedback can increase
capacity if the set of eigenvectors corresponding to the sequence of
eigenvalues (1 + Ak' k < J) of V'_IRNV*_1 does not contain J natural basis
vectors.

This completes the proof of (2) of the Theorem. The proof of (2) of the
Corollary follows from (2) of the Theorem, in the same way that (1) of the

Corollary was obtained. o

Verification of the Sufficient Conditions

Verification of the sufficient conditions given in the Theorem is
equivalent to determining the value of CW(P)' as can be seen from the
expressions for CW(P) [4]. The difficulty of verifying the sufficient
conditions of the Corollary is considerably less than for the Theorem. We now
summarize how one can verify that CWF(P) > Cw(P) for all P > 0. This will be
done by giving conditions that are equivalent to the conditions given in (1)
and (2) of the Corollary for CWF(P) > CW(P) for all P > 0.

Suppose that V_IRNV“-1 is nondiagonal. Write

»*—1

N =A-D

Ak

where D is a diagonal matrix whose non-zero elements D(i,i) are the diagonal
1

l".“.(‘u

s

a a a

elements v.. of V_IR V*_
ii N

such that (v’IRNv*'l)(ij) = (vVIRW (1) = O for

4
ole

all j #1i. CWF(P) > Cw(P) for all P > O if the following conditions are

satisfied.

1. Finite-Dimensional Channel.

5 _" .“- ls l”-(

inf <Ax,x> ¢ inf {D(i.,i): D(i.i) > 0};:
Ixi=1

LGy W L"A.'.L'l.‘
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2. Infinite-Dimensional Channel.

(a) inf <Ax,x> < inf {D(i.i): D(i.i) > O}:
lIxli=1

-

""l
s s

(b) inf <Ax,x> is an eigenvalue of V—IRNV*“1 of finite multiplicity;
lIxll=1

s
e
14

'l

‘l'

and

(e¢) if HO is the subspace spanned by the eigenvectors of V—IRNV"-'1

corresponding to the eigenvalue inf <Ax,x>, then
xli=1

inf <Ax,x> > inf <{Ax,x>.
lIxl=1 lixil=1

X in Hé
To see that (2) implies the corresponding sufficient condition in (2) of
the Corollary, one can verify that (2a) and (2b) imply that the smallest
eigenvalue of VclRNV"-1 exists and does not have eigenspace containing a set
of natural basis vectors complete for the subspace; (2b) shows that the
multiplicity of this subspace is finite; and (2b) plus (2c) show that this

eigenvalue is not the limit of a sequence of distinct eigenvalues.

These conditions are not complex. Consider the finite-dimensional N

1, 1 <

: . - -~ : N

channel. First, one inspects the matrix V RNV and locates the diagonal i
[

3

elements i such that the ith row and ith column are all zero except for the

ii element. Denote these elements as Ty This is the set of eigenvalues of

- ¥

V_IRNV“_1 corresponding to natural basis vectors as eigenvectors. If the ;ﬁ:

- e *.:..‘

smallest such LA is strictly greater than inf <V lRNV 1x.x). then the r
)

lIxli=1

.
«

s

smallest eigenvalue of V'.IRNV"—1 has no eigenvectors that are natural basis

4.7,

vectors, and so CWF(P) > CW(P) for all P > 0. If the smallest e is equal to By
-
- - Ky
inf <V IRNV* 1x.x). then one must determine the multiplicity of inf Y= i
xl=1 i '
¥
\D
e
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as an eigenvalue of V—lRNV*-l. If this multiplicity is strictly greater than

the number of times 7, appears among the {wi. i 2 1}, then again CWF(P) >

Cy(P) for all P > 0.

Necessary Conditions

The Corollary shows that the sufficient condition for feedback to
increase capacity for all sufficiently large P is also necessary, in the case
of the finite-dimensional channel. Although the emphasis here has been on
sufficient conditions, it is our conjecture that each of the four sufficient

conditions given in the Corollary is also a necessary condition for the same

result.

Concluding Remarks

It can be seen that the capacity problem with feedback for small P
reduces to consideration of the eigenmanifold for the smallest eigenvalue of
V_lRNV*_l. for the finite-dimensional channel. If this eigenvalue has
multiplicity one, then feedback can increase capacity for every value of P if
the corresponding eigenvector is not a natural basis vector.

In the case of the infinite-dimensional channel, the same situation
holds, except that the additional requirement is imposed of having the

smallest eigenvalue be strictly less than the smallest limit point of

-1, 1

V 'R,V

N

For the case of sufficiently large P, the problem can be couched in terms
of the reproducing kernel Hilbert space of RW' say HW' If the Gaussian cylin-
der set measure pu on Hw defined by My = uOJ_l. J the natural injection of Hw

into 82 (i.e., jx is just x viewed as an element of &, rather than as an ele-

2

ment of HW)' has diagonal covariance operator, then CWF(P) = C(P); otherwise,
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CWF(P) > CW(P) for all sufficiently large P. In essence. this states that

capacity can be increased by feedback for all sufficiently large P if the
noise is correlated when it is viewed as belonging to Hw. rather than to 82.

The setup given here is rather general, and an obvious extension is to
apply the same approach to the time-continuous channel. However, the structure
of (Hilbert-Schmidt) Volterra operators is more complicated in L2[O.T] than in
82. and an arbitrary covariance operator in LZ[O.T] may not have a causal

*
decomposition of the form = VV , V Volterra. Thus, a complete extension of
p

these results in the form stated here does not seem possible.
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